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Physics Motivation



Current Status of DM Searches

[ No observation of DM signatures via non-gravitational interactions (many

searches/interpretations designed/performed under WIMP/minimal dark-sector

scenarios) = merely excluding more parameter space in dark matter models
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Current Status of DM Searches

[ No observation of DM signatures via non-gravitational interactions (many

searches/interpretations designed/performed under WIMP/minimal dark-sector

scenarios) = merely excluding more parameter space in dark matter models
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Time to change our approach?!
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Conventional Approach

U Traditional approaches for DM searches:

v" Weak-scale mass

v Weakly-coupled

v Minimal dark sector

v' Elastic scattering

v" Non-relativistic
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Conventional vs. Nonconventional Approach

U Traditional approaches for DM searches: U Modified approaches for DM searches:
v mass v Other mass scale: e.g., PeV, sub-GeV,
MeV, keV, meV, ...
v Wealdy=coupled v Weaker coupling to the SM: e.g.,

vector portal (dark photon), scalar
portal, axion portal, ...

v' Miniratdark sector v' “Flavorful” dark sector: e.g., more
dark matter species, unstable heavier

dark sector states, ...

v' Elastieseattering v' Inelastic scattering (i.e., up-scatter to
v Non-relativistic an “excited” state)

v' Relativistic
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Conventional vs. Nonconventional Approach

U Traditional approaches for DM searches: O Modified approaches for DM searches:
v mass v Other mass scale: e.g., PeV, sub-GeV,
MeV, keV, meV, ...
v Wealdy-eoupled v Weaker coupling to the SM: e.g.,

vector portal (dark photon), scalar
portal, axion portal, ...

v Minimat-darksector v' “Flavorful” dark sector: e.g., more
dark matter species, unstable heavier

dark sector states, ...

v' Elastieseattering v Inelastic scattering (i.e., up-scatter to
v Non-relativistic an “excited” state)

v" Relativistic
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DM Search Strategies

[ .
/‘ """""""" ‘\
Vpum E Non-relativistic E
Scattering I (vpy K ) :
elastic i Direct detection i
inelastic =‘ inelastic DM (iDM) ::
e —7

Very well-studied

.
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’ DM Search Strategies

Vpum Non-relativistic Relativistic
Scattering (vpy K )
elastic Direct detection Boosted DM (eB M)
inelastic inelastic DM (iDM) inelastic BDM (lB

e
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’ DM Search Strategies

Vpum Non-relativistic Relativistic
Scattering (vpy K ) Vpp~C
elastic Direct detection Boosted DM (eBDM)
inelastic inelastic DM (iDM) inelastic BDM (iBD
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Signatures and
General Strategies



/\
Generic Boosted Dark Matter (BDM) Event Topologies

e
s

my = E; = ~30 MeV —~20 GeV
with F,, = ~1071 —-1077 ecm™3s7!

Cosmological DM,
Assumed no direct
couple to SM

\X

Galactic Center

* Xo: heavier DM

* xp:lighter DM

* ¥;: boost factor of y;

* x»: massive unstable dark-sector state
* ¢: mediator/portal particle
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Generic Boosted Dark Matter (BDM) Event Topologies

(a) Elastic scattering (eBDM) at DUNE [Necib, Moon, Wongjirad, Conrad

my = E; = ~30 MeV —~20 GeV (2016); Alhazmi, Kong, Mohlabeng, Park (2016)] (and at ProtoDUNE [DK,
with F,, = ~1071 = 1077 cm 257! Kong, Park, Shin (2018)])
R e e S
DUNE FD I
Xioy X
Cosmological DM, > .
Assumed no direct V1 : ) I
couple to SM I :
I
I
\ e e/N :
X0 % X1 s e l
—p A = = = > 1
Xo % X1
— ey
Galactic Center

Xo: heavier DM

x1: lighter DM

y1: boost factor of y;

X»: massive unstable dark-sector state
¢: mediator/portal particle
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—

Generic Boosted Dark Matter (BDM) Event Topologies

(a) Elastic scattering (eBDM) at DUNE [Necib, Moon, Wongjirad, Conrad

e S Aoz 2016); Alhazmi, Kong, Mohlabeng, Park (2016)] (and at Proto DK,
me = E; = ~30 MeV —~20 GeV (2016); All g, Mohlabeng, Parl d at ProtoDUNE |
with F, = ~1071 =107 cm 2571 Kong, Park, Shin (2018)])
HURE PR
Xi, Sy
Cosmological DM, 7 7%
Assumed no direct V1 : ) I
couple to SM I :
I
I
\ e e/N !
X0 X1 s e l
—f N = = = >
(b) Inelastic scattering (iBDM) at DUNE [DK, Park, Shin (2016)] (and at
Xo X1 ProtoDUNE [Chatterjee, De Roeck, DK, Moghaddam, Park, Shin, Whitehead, Yu
e (2018)])
|mmmmmmm e e e e
DUNE FD I
Galactic Center aE X2 g
9 T > »
e ) :
* Xo: heavier DM ! I
* x;p:lighter DM : 1
* ¥;: boost factor of y; I Losooiaaiiin) :
e _ e/N e/N o l
: X»: massive unstable dark-sector state : / (IH)VISIbl e :

¢: mediator/portal particle
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—

my = E; = ~30 MeV —~20 GeV
with F,, = ~1071 —-1077 ecm™3s7!

Cosmological DM,
Assumed no direct
couple to SM

0% X1
—d NP — — — >

Xo% X1
B 7 .

Galactic Center

Xo: heavier DM

x1: lighter DM

y1: boost factor of y;

X»: massive unstable dark-sector state
* ¢: mediator/portal particle

Generic Boosted Dark Matter (BDM) Event Topologies

(a) Elastic scattering (eBDM) at DUNE [Necib, Moon, Wongjirad, Conrad
(2016); Alhazmi, Kong, Mohlabeng, Park (2016)] (and at ProtoDUNE [DK,
Kong, Park, Shin (2018)])

X1

V1

(b) Inelastic scattering (iBDM) at DUNE [DK, Park, Shin (2016)] (and at
ProtoDUNE [Chatterjee, De Roeck, DK, Moghaddam, Park, Shin, Whitehead, Yu

(2018)])

X1

V1
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Expected Signatures with a Dark Photon Scenario

J Benchmark model to describe interactions

between dark-sector and SM-sector particles:
dark photon (X) model.

Om, >my; +2m,

U Three electron tracks with two possibilities

v' “Prompt” iBDM: scattering (primary) and

decay (secondary) arise at the same point.

v “Displaced” iBDM: primary and

Scattering (primary) Decay (secondary)

secondary interaction points appear

displaced (often due to long-lived y)

.
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Expected Signatures with a Dark Photon Scenario

J Benchmark model to describe interactions

between dark-sector and SM-sector particles:
dark photon (X) model.

Om, >my; +2m,

U Three electron tracks with two possibilities

v' “Prompt” iBDM: scattering (primary) and

decay (secondary) arise at the same point.

v “Displaced” iBDM: primary and

Scattering (primary) Decay (secondary)

secondary interaction points appear

displaced (often due to long-lived y)

U Note that tracks will pop up inside the fiducial volume.

Q Straightforwardly applicable to proton recoil (up to form factor, DIS etc.)

.
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~

Expected Number of v-induced Events

0 Atm.-v may induce multi-track events (which could be backgrounds)
U The dominant source V,+ et

v v,.-induced C.C. events et

p/n 7Ti<:v

e.g. mt - utv - efvvy, 1t - ety
O Other subdominant sources

v N.C. events: smaller cross section
v' v;-induced: too small flux, hence negligible

v" v,-induced C.C.: leaving an energetic (primary) muon (which can be tagged easily)

e
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Expected Number of v-induced Events

a Ve ~flux [SK Collaboration, 1502.03916] ® V,-Cross section [Formaggio, Zeller, 1305.7513]

Number of Events by Atm v, Scattering @ KAM Number of Events by Atm ¥, Scattering @ KAM

100 100 ' QE
....... RED
10- I ]
— - - DIS
I: |1;=
T -
) = ~
z z I
0.10; 0.10} P e
i L
- -3
H H H | -
0.0p. ' L PRI - .. L i
b1 1 10 100 1000 0084 1 10 100 1000
E,, [GeV] E;, [GeV]
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Expected Number of v-induced Events

Q Ve -flux [SK Collaboration, 1502.03916] & Ve-CIross section [Formaggio, Zeller, 1305.7513]

Number of Events by Atm v, Scattering @ KAM Number of Events by Atm ¥, Scattering @ KAM

100_ T ;‘ Q'E;"'— 1007 f QE 1:
— RES| Guvemcccssccces: RESE
= -~ DIS —~ 1 e DIS
| - ]
; I:} 4
DR n 1f
= =
z z
0.10- 0.10}
| |
0.01" B 0.0 ' )
l. 1000 ). 100 1000

E,, [GeV]

U Most DIS events result in messy final states, not mimicking signal events, while a majority of
resonance events may create a few mesons in the final state [Formaggio, Zeller, 1305.7513].
— 12.2 events/kt/yr are potentially relevant, i.e., 240 (480) events for 20 kt (40 kt)
O (quality) track-based particle identification, timing information etc at DUNE LArTPC

detectors can suppress such events significantly. - Zero BG is achievable!
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Other Experimental Challenges

O For a given set of m4, y;, and m¢, the maximum accessible m, is

m, < \/m% + 2y;mymy + m? — my,

0 and if the target is relatively light (m; > m), which is the case

£ 00 20 w0 10 400 440

LArSoft sim. with a 10 GeV BDM event

of e-scattering, we find

m, < mq + Yime.

)
IllIlIJIIIl‘[1iIIIIIlIIlIIII

B EE g 8 &

II||III|IIIIIIIII||IIl||||l|1‘

= A large y;, is preferred to access the heavier dark-sector state.

— All final state particles are likely to be highly collimated. oz [

e
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Other Experimental Challenges

O For a given set of m4, y;, and m¢, the maximum accessible m, is

m, < \/m% + 2y;mymy + m? — my,

0 and if the target is relatively light (m; > m), which is the case

&

II||III|IIIIIIIII||IIl||||l|1‘

00 150 20 240 w0 10 400 440
T

LArSoft sim. with a 10 GeV BDM event

of e-scattering, we find

‘l‘*-iuhmllull

m, < mq + Yime. 500

§
£
vl
"
1

= A large y;, is preferred to access the heavier dark-sector state.

IllIlIJIII

— All final state particles are likely to be highly collimated. oz [

HEm Simulated Electron Hits
Il Simulated Gamma Hits
+ + Data Hits

O General expectation: great angular and position resolutions

at DUNE!

3-electron track?!

y

Area Normalized

= dE/dx in totally overlaid track vs. photon track vs. electron

track [De Roeck, DK, Moghaddam, Park, Shin, Whitehead, in

2 3 4 5
progress] dE/dx [MeV/cm]
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Phenomenology:
Experimental Sensitivities



Reminder for the Signal of Interest

Scattering (primary) Decay (secondary)

U Remember that dark photon is a “player” in the benchmark model, allowing us to study

phenomenology of dark photon!

.
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Dark Photon Parameter Space: Invisible X Decay

o ETET
- EBaPar
U Case study 1: mass spectra T
for which dark photon decays o / /m,
into DM pairs, i.e., my > o 1710.00971]
2m1 i I 10 ) 10
1073

U 1-year data collection from

DUNE FD 20 kt, 1-year exposure, Ey;, = 30 MeV -".,"%Jar St

|

| —
|
. |
the entire sky, g1, = 1, Eyp, = i
|
|

. \ Zero background
A : .
NAO o ~=- 5% of|the v,-induced
[ 50% of the v,-induced

30 MeV and various BGs are 1074

assumed. w

] Even in the worst scenario

1073 g my =5 MeV

(poor BG rejection, i.e., W y1 =100
= my > 2m

dotted curve) unexplored .

10-6 : — om=2MeV
parameter space can be |

0.01 0.02 0.05 0.1 0.2

probed by DUNE. my [GeV]

e
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Dark Photon Parameter Space: Visible X decay

1

L1l
)

1072

U Case study 2: mass spectra

for which dark photon decays o
. . . 1078 A’ model
into lepton pairs, i.e.,, my < 1801.04847]
Zml DUNE FD 20 kt, 1-year exposure, E;, = 30 MeV | o Imllo (Cev]

; -3 . 4t ]

U 1-year data collection from 10
the entire sky, g1, = 1, Ep, =
. Zero background

30 MeV and various BGs are s el Toe--- 5% of|the v, -induced
S N e 50% of the v,-induced

mp =50 MeV
y1 =40

10-5
my < 2m

—— Om =10 MeV
\ N
0.01 0.02 0.05 0.1 0.2
my [GeV]

e
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Model-independent Reach

 Non-trivial to find appropriate parameterizations for providing model-independent

reaches due to many parameters involved in the model

O Number of signal events Ni;, is

Nsig = 0¢ * F - A - texp - N

0. : scattering cross section between y; and (target) electron

F: flux of incoming (boosted) y;

" A:acceptance

. : exposure time : :
exp =il } Controllable! (once a detector is determined)

N,: total # of target electrons

Here we factored out the acceptance related to distance between the primary (ER) and the

secondary vertices, other factors like cuts, energy threshold, etc are absorbed into o..
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90% C.L. with

various BGs —l

r N90
O¢c " >
© N A(glab) ) texp ) Ne

Sy
Calculable

Evaluated under the assumption

of cumulatively isotropic y; flux

?1ap different event-by-event, so
taking #[55* for more conservative

limit

101

o F [x 10738 571]
.
S

Model-independent Reach: Prospect

—— Zero BG
--- 5% of v,—induced .
50% of v,—induced .

DUNE FD 20 kt, 1-year exposure, E;;, = 30 MeV R

1073
0.1 1 100 1000
> pmax [
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N90
>
7= F A tog N,
10*
] 2iPe <O-v))(o)(o—>)(1)(1
mg &
=
&
: - N
— Experimental sensitivity can L i
— 2
be represented by X 10 :
O vs. Ey (= mg = yymy) 3
(cf. 0 vs. mpy in conventional
WIMP searches) 100

Model-independent Reach: More Familiar Form

L E,, = 30-MeV

relevant to signals with overlaid

vertices or elastic scattering signals [
] -

DUNE FD 20 kt, 1-year exposure,

- Not accessible for iBDM
| due to thefeshold

50 100

500 1000

T
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Conclusions and Outlook

N
Vpum Non-relativistic Relativistic
Scattering (vpy K €) (vppy~c)
elastic Direct detection Boosted DM (eBDM)
inelastic inelastic DM (iDM) ' inelastic BDM (iBDM)

O The boosted (light) DM search is promising and provides a new direction to study DM

phenomenology.

U

Theoretical/phenomenological studies have been actively conducted and in progress.

U These ideas can be tested in the DUNE experiment.

v Experimental studies at LArTPC detectors have already begun, e.g. ProtoDUNE,
ICARUS T600 (using actual data taken at Gran Sasso)

Hhaonk yow !
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Back-up



Two-component Boosted DM Scenario

O A possible relativistic source: BDM scenario (cosmic frontier), stability of the two DM species ensured by
separate symmetries, e.g., Z, ® Z;, U(1) ® U(1)', etc.

SM
T

Freeze-out later

Dominant relic

Freeze-out first
1078

Negligible, non-relativistic relic
1079 L
10710} “Assisted” freeze-out mechanism
[Belanger, Park (2011)]
2107
10712 L
]0—13 L
10714 L L L L L
10 15 20 30 50 70 100
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“Relativistic” Dark Matter Search

Xo X1 SM
Xo X1 SM
v" Heavier relic y,: hard to detect it due to tiny/negligible coupling to SM

v' Lighterrelic y;: hard to detect it due to small amount

X0 e S X1
\ ﬁ
becomes boosted, -
Xo X1 hence relativistic! \

(Y1 = mo/my)

(Galactic Center at CURRENT universe) (Laboratory)

[Agashe, Cui, Necib, Thaler (2014)]
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Production of BDM & Benchmark Model

(]

Production of boosted DM at the universe: two-component boosted DM scenario [Agashe, Cui, Necib, Thaler (2014)]

Line 3 + @i v X, + 912)?2@2 + h. c. +(others)

Vector portal (e.g., dark gauge boson scenario) [Holdom (1986)]

Fermionic DM w»«(
% x»:aheavier (unstable) dark-sector state
% Flavor-conserving neutral current = elastic scattering

% Flavor-changing neutral current = inelastic scattering Y
Not restricted to this model: various models conceiving BDM signatures

% BDM source: galactic center, solar capture, dwarf galaxies, assisted freeze-out, semi-annihilation,

fast—rnoving DM etc. [Agashe et al. (2014); Berger et al. (2015); Kong et al. (2015); Alhazmi et al. (2017); Super-
K (2017); Belanger et al. (2011); D’Eramo et al. (2010); Huang et al. (2013)]

% Portal: vector portal, scalar portal, etc.
% DM spin: fermionic DM, scalar DM, etc.

% iBDM-inducing operator: two chiral fermions, two real scalars, dipole moment interactions, etc.

[Tucker-Smith, Weiner (2001); Giudice, DK, Park, Shin (2017)]
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Neutrino Fluxes
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Dark Photon

103

103

€e
[y
S
=
2

Secluded

10°¢

1077 10-1

MA:[GeV]

102

[Bauer, Foldenauer, Jaeckel (2018)]
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e-scattering vs. p-scattering

U Comparison of cross sections via e-scattering and p-scattering

— 10°F ' —
> —_— dm =0
@ dm =0.5my
g om =my
S dm=2m
g — 5m=5m1
1 —_— om =10m,
10} — dm =100m,
2 x ina Y
10 P rel mil
e-scattering
1073k . _preferred ]
10 107 102 10}
m, [G&V]

Doojin Kim, CERN

O As my becomes negligible, e-
scattering is more advantageous
than p-scattering. <= smaller
suppression by the mass of target
electron.

1 “More” inelastic scattering
shrinks the e-scattering preferred
region. < p-scattering is better at
accessing heavier dark sector

states.

DUNE Collaboration Phone Call



e-scattering vs. p-scattering

.  my=5Gev. L As m, becomes large, the e-
= 1077 | — em=0_ ] : :
3 5m =0.5m, ; scattering preferred region
—_ om =myq ]
’ —  dm=2m ' expands. < Difficulty in
g —_— om =5my 1
101l ot | accessing heavier dark-sector
[ - - 1 1
| states via e-scattering is relaxed
_ | by a larger boost factor of y;.
] —ainaly
1072 \ w ?‘«e\\“ﬂ”‘“a\\/
107k

my [GeQ/]
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